Structure cristalline de Ag₄H₄As₄O₁₄: Un nouvel exemple d'anion As₄O₁₄

A. BOUDJADA ET M. T. AVERBUCH-POUCHOT

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166X, 38042 Grenoble Cédex. France

Received May 2, 1983; in revised form August 8, 1983

Ag₄H₄As₄O₁₄ is monoclinic (P2₁/n) with a = 7.839(5) Å, b = 12.428(5) Å, c = 6.556(2) Å, $\beta = 109.30(2)^\circ$, and Z = 2. The volume is 602.9(9) Å³ leading to $d_r = 5.29 \text{ mg} \cdot \text{m}^{-3}$. The crystal structure of this salt has been determined using Patterson method and refined to a final R value of 0.045 for 1593 independent reflections. The crystal structure consists of As_4O_{14} groups linked by AgO_5 and AgO_6 polyhedra. This salt provides the second example of an As_4O_{14} anion, whose main features are both tetrahedral and octahedral arsenic.

Introduction

En faisant réagir de l'acide arsénique concentré sur le carbonate d'argent, et en laissant reposer cette solution à température ambiante pendant 24 heures, on obtient aisément des cristaux de Ag₄H₄As₄O₁₄.

Ils se présentent sous forme de rhomboédres réguliers incolores. La lumière est relativement sans effet sur ce composé qui est très stable. L'eau et l'alcool ne l'hydrolysent pas contrairement à $AgH_2PO_4(1)$. Par contre, les bases l'attaquent pour donner le monoarséniate neutre selon la réaction

$$3Ag_4H_4As_4O_{14} + 8(OH^-) \rightarrow 4Ag_3AsO_4 + 8H_2AsO_4^- + 2H_2O.$$

Caracteristiques Cristallines

L'étude d'un cristal de ce sel par la méthode de Weissenberg montre qu'il est monoclinique. Les extinctions observées

0022-4596/84 \$3.00

(h0l: h + l = 2n et 0k0: k = 2n) conduisent sans ambiguïté au groupe d'espace $P2_1/n$. Le Tableau I donne le dépouillement d'un diffractogramme de poudre de ce composé. L'affinement par moindres carrés des paramètres de maille effectué en utilisant les données angulaires de ce diagramme conduit à

$$a = 7,843(3) \text{ Å} b = 12,435(4) \text{ Å} c = 6,559(2) \text{ Å}.$$
 $\beta = 109,37(2)^{\circ}$

La maille renferme deux unités formulaires.

Ces valeurs sont très proches de celles obtenues à l'aide du diffractomètre automatique et utilisées pour la détermination de la structure. Ces dernières valeurs sont celles reportées dans le résumé.

Determination de la structure

Le cristal utilisé était de petites dimen-

TABLEAU I

DIFFRACTOGRAMME DE POUDRE DE Ag₄H₄As₄O₁₄ EFFECTUÉ EN UTILISANT LA LONGUEUR D'ONDE $K\alpha$ DU CUIVRE.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	hkl	d _{obs}	d _{calc}	I/I ₀	hkl	d _{obs}	d_{calc}	<i>I/I</i> 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110	6,37	6,36	39	122	2,375	2,375	11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	5.78	5,78	68	232	2,370	2,371	70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	5,55	5,54	32	150	2,358	2,357	58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111	5,24	5,24	5	231	2,318	2,318	42
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	120	4,76	4,76	24	051)	2 305	2,307	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	021	4,38	4,39	21	3125	2,905	2,304 J	21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	121	4,24	4,23	21	320	2,294	2,294	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	4,12	4,13	32	151	2,285	2,284	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	3,91	3,92	19	142	2,251	2,252	29
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	3,69	3,70	27	331	2,207	2,208	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	130	3,62	3,62	43	042]	2 102	2 102	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	211	3,61	3,61	47	3 2 Ī	2,(92	2,195	37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	210	3,54	3,55	24	132	7 105	2,184)	41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	031	3,45	3,44	20	10 <u>3</u> ∫	2,185	2,183∫	41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	131	3,36	3,37	8	113	2,150	2,151	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22Ĩ	3,22	3,23	30	330)	2 120	2,121)	40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	3,18	3,18	100	24Ž	2,120	2,177	47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	3,15	3,16	30	213	2,097	2,096	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	002	3,09	3,10	64	241	2,080	2,079	44
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	012	2,99	3,00	68	250)	2.064	2,064)	44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	131	2,925	2,924	34	202 J	2,004	2, 0 63∫	44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\left.\begin{array}{c}1&2&\overline{2}\\2&0&\overline{2}\end{array}\right\}$	2,892	2,891}	63	$\left\{ \begin{array}{c} 3 & 1 & 1 \\ 3 & 3 & \overline{2} \end{array} \right\}$	2,041	2,042 2,040	56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	2,865	2,866	39	013]	2 026	2,036]	62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	2,815	2,816	49	212 ∫	2,030	2,035	63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	231	2,791	2,790	56	223	2,011	2,012	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0411	2,779	2,778	39	341)	2 000	1,998]	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	022	2,771	2,771	55	160	2,000	1,995	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	230	2,760	2,761	18	142]	1 982	1,981)	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	141	2,737	2,738	12	152	1,302	1,978)	07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	211	2,730	2,729	55	061)	1.065	1,965)	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	222	2,622	2,621	40	3215	1,905	1,964	50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30ī	2,608	2,609	42	023]	1 059	1,959]	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	132	2,565	2,565	37	222	1,350	1,958	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	311	2,552	2,553	10	161	1,952	1,951	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	112	2,517	2,517	5	052]	1 939	1,939]	75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	141	2,482	2,483	12	4 1 ĪJ	1,9.93	1,937 ∫	/_,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	032	2,480	2,480	61	3 4 0]	1 931	1,933]	25
3 2 1 2,404 2,405 32 3 0 3 1,927 13	310	2,421	2,421	15	13 <u>3</u> J	1,221	1,932J	20
	321	2,404	2,405	32	303		1,927	13

la durée des mesures, les réflexions de référence ($\overline{154}$ et $15\overline{4}$) n'ont subi aucune variation significative. Aucune correction d'absorption n'a été effectuée: $\mu R = 0.63$.

Après correction des facteurs de Lorentz polarisation, l'examen de la fonction de Patterson nous a permis de localiser les deux atomes d'argent. Des synthèses de Fourier successives ont révélé l'ensemble de la structure (atomes d'arsenic et d'oxygène). Tous les atomes sont en position générale. Ouelques cycles d'affinements (2) conduisent à un R de 0.099 avec 1776 réflexions pour des facteurs thermiques isotropes. En introduisant les facteurs thermiques anisotropes, les facteurs de véracité convergent vers $R = \Sigma[|F_0 - F_c|]/\Sigma|F_0| =$ 0,045 et $R_w = (\Sigma w [|F_0 - F_c|]^2 / \Sigma w |F_0|^2)^{1/2} =$ 0,051 pour 1591 réflexions qui satisfont au critère $I \ge 2\sigma(I)$.

Le Tableau II donne les paramètres des positions atomiques et les B_{eq} . A partir de ces résultats, la formule chimique est donc $Ag_4H_4As_4O_{14}$. Notons d'autre part que dans le système ternaire Ag_2O , As_2O_5 , H_2O à $60^{\circ}C$ ce composé n'est pas signalé. La formule chimique globale s'écrivant As_2O_5 , Ag_2O , H_2O pourrait prêter à confusion en ce sens qu'elle laisserait croire au pyroarséniate $Ag_2H_2As_2O_7$. Les protons n'ont pas pu être localisés; les synthèses de Fourier différence s'étant révélées inutilisables à cause de la forte contribution des atomes

sions: environ 0,1 mm de côté. 1899 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 en utilisant la longueur d'onde $K\bar{\alpha}$ de l'argent (0,5608 Å). Chaque réflexion a été mesurée en balayage ω -2 Θ couplé dans un domaine de 1,20° à une vitesse de 0,02° sec⁻¹. Le fond continu a été mesuré durant 5 sec à chaque extrémité de ce domaine. Le domaine angulaire de mesure s'étendait de 4° à 30° (Θ). Durant toute

TABLEAU II

PARAMÈTRES	DES	POSITIONS	ATOMIQUES	ΕT	Bea	(Å	(2)
------------	-----	-----------	-----------	----	-----	----	-----

	$x(\sigma)$	y(σ)	$z(\sigma)$	B_{eq} (Å ²)
Ag(1)	0.0229(1)	0.22146(9)	0.1322(1)	1,75
Ag(2)	0.1721(1)	0.54274(8)	0.2442(2)	1,98
As(1)	0.4414(1)	0.29249(8)	0.1147(1)	0,72
As(2)	0.6634(1)	0.50301(8)	0.1695(1)	0,69
O(L22)	0.4313(9)	0.5530(6)	0.106(1)	1.00
O(E21)	0.7221(10)	0.5628(6)	0.433(1)	1,08
O(E22)	0.8831(9)	0.4534(7)	0.195(1)	1,19
O(L12)	0.6068(9)	0.3759(6)	0.282(1)	1.00
O(L21)	0.2720(10)	0.3712(6)	-0.053(1)	0.98
O(E11)	0.5220(10)	0.2097(6)	-0.029(1)	1.18
O(E12)	0.3503(10)	0.2306(6)	0.282(1)	1,21

d'argent et d'arsenic. La liste des facteurs de structure est disponible chez les auteurs. La liste des facteurs de structure est disponible chez les auteurs.

Description de la structure

La Fig. 1 représente la projection de la structure sur le plan [001].

A. Les polyèdres d'argent

Leurs coordinences sont différentes. Le premier Ag(1) a six atomes voisins alors que le second: Ag(2) n'en a que cinq. Ce dernier type de coordinence de l'argent I a plusieurs fois été mis en évidence dans des composés tels que Ag₃P₃O₉, H₂O (4). Dans ce dernier composé, notamment, existe la

FIG. 1. Projection de la structure de $Ag_4H_4As_4O_{14}$ sur le plan (a,b).

d'argent sur trois sont pentacoordinés.

même analogie puisque deux atomes enne Ag(1)-O est 2,556(4) Å. La moyenne des angles O-Ag(1)-O est 100,5(1)°. Dans Le polyèdre $Ag(1)O_6$. La distance moy- ce polyèdre on observe une distance

TABLEAU III

DISTANCES ET ANGLES DANS LES LIAISONS INTERATOMIQUES: (a) Ag(1), (b) Ag(2), (c) As(1), (d) As(2) (LES DISTANCES M-O SONT SOULIGNÉES, LES ANGLES O-M-O SONT AU-DESSUS DE LA DIAGONALE, LES DISTANCES O-O SONT EN-DESSOUS DE LA DIAGONALE)

(a)								
Ag(1)	O(L22)	O(E21)	O(L12)	O(E11)	O(E12)	O(E12)		
O(L22)	2,656(4)	57,3(1)	99,7(1)	73,8(1)	82,9(1)	138,7(1)		
O(E21)	2,563(5)	2,686(4)	84,5(1)	100,8(1)	134,7(1)	83,1(1)		
O(L12)	4,217(5)	3,732(5)	2,859(4)	166,8(1)	81,5(1)	61,8(1)		
O(E11)	3,035(6)	3,913(6)	5,208(7)	2,384(4)	86,2(1)	130,5(1)		
O(E12)	3,371(5)	4,721(6)	3,466(5)	3,290(6)	2,429(4)	125,4(1)		
O(E12)	4,661(5)	3,334(6)	2,702(6)	4,275(5)	4,224(1)	2,324(4)		
Ag(1)-Ag(2)): 3,167(1) Å							
Ag(2) - Ag(2)): 3,399(1) A							

(b)							
Ag(2)	O(L22)	O(E21)	O(E22)	O(E22)	O(E12)		
O(L22)	2,487(4)	105,4(1)	143,9(1)	59,0(1)	88,4(1)		
O(E21)	3,884(5)	2,396(4)	84,4(1)	145,0(1)	127,3(1)		
O(E22)	4,691(5)	3,253(5)	2,447(4)	93,0(1)	113,5(1)		
O(E22)	2,601(5)	4,927(6)	3,789(8)	2,769(4)	85,6(1)		
O(E12)	3,371(5)	4,284(6)	4,007(6)	3,489(6)	2,344(4)		

		(c)			
As(1)	O(L12)	O(L21)	O(E11)	O(E12)	
O(L12)	1,737(4)	108,8(2)	112,6(2)	104,5(2)	
O(L21)	2,812(5)	1,722(4)	110,4(2)	105,9(2)	
O(E11)	2,821(5)	2,772(6)	1,653(4)	114,3(2)	
O(E12)	2,702(6)	2,715(5)	2,800(6)	1,680(4)	
As(2)-As(2):	2,783(1	I) Å	As(1)–As(2):	3,097(1) Å	
As(2)-O(L22))-As(2): 98,2(2)	o	As(2)-O(L12)-As(1	l): 118,9(2)°	
As(2)-O(L22)	-As(1): 81,5(1)	0	As(2)-O(L21)-As(1): 118.5(2)°	

As(2)-O(L21)-As(1): 118,5(2)°

As(2)	O(L22)	O(L22)	(d) O(E21)	O(E22)	O(L12)	O(L21)
O(L22)	1,835(4)	81,8(2)	89,9(1)	172,8(2)	91,7(2)	90,3(2)
O(L22)	2,410(7)	1,846(4)	171,6(2)	91,5(2)	89,7(2)	89,6(2)
O(E21)	2,563(5)	3,629(5)	1,793(4)	96,9(2)	89,4(2)	91,5(2)
O(E22)	3,612(5)	2,601(5)	2,676(6)	1,784(4)	91,0(2)	86,9(2)
O(L12)	2,649(5)	2,613(5)	2,569(5)	2,599(5)	1,856(4)	177,8(2)
O(L21)	2,625(5)	2,625(5)	2,633(5)	2,520(6)	3,737(5)	1,880(4)

As(2)-O(L22)-As(1): 81,3(1)°

longue, deux distances moyennes et trois courtes distances. On ne peut pas toutefois parler d'octaèdre. Les angles OAgO se rapprochent des angles d'un prisme trigonal d'Archimède. Dans ce cas, Ag(1) semble être inscrit dans un prisme trigonal d'Archimède très irrégulier.

Le polyèdre $Ag(2)O_5$. La distance moyenne Ag(2)–O est 2,489(4) Å et la moyenne angles O-Ag(2)-O: 104,6(1)°. des Il possède quatre distances courtes et une longue Ag(2)-O. La pentacoordinence entraîne deux types de figures: la bipyramide trigonale (angles internes de 120, 90, et 180°) et la pyramide à base carrée (angles internes de 90 et 180°). Dans ce cas, vu les angles $\angle OAgO$, il ne peut s'agir en aucun cas de l'un de ces deux types de solides. Par contre, ce polyèdre a de fortes analogies avec $Ag(1)O_6$.

Les distances Ag(1)-Ag(2) et Ag(2)-Ag(2), relativement courtes, suggèrent la formation de paires métalliques Ag-Ag. L'argent comme d'autres métaux, a tendance à former des amas métalliques. Il est à noter la forte agitation thermique de ces ions: caractère que l'on retrouve très souvent pour ce métal. Le Tableau III rassemble les distances et angles dans les différents polyèdres.

B. Le groupement As_4O_{14}

Dans le tétraèdre $As(1)O_4$, les distances et angles moyens sont 1,698(4) Å et 109,4(2)°. Ce sont des valeurs très voisines de celles trouvées dans la littérature concernant le tétraèdre AsO_4 . Notons cependant qu'il est relativement déformé.

As(2)O₆ est un octaèdre assez régulier avec une distance moyenne de 1,832(4) Å. La distance moyenne AsO dans l'octaèdre AsO₆ dans les quelques exemples connus à ce jour varie de 1,82 à 1,83 Å.

Le groupement As_4O_{14} est formé de deux octaèdres AsO_6 et de deux tétraèdres AsO_4 . Les deux polyèdres sont reliés par une arête commune O(L22)-O(L22). Chacun des deux tétraèdres est relié par deux sommets [O(L12) et O(L21)] aux deux octaèdres AsO_6 . Cette distribution crée une entité finie As_4O_{14} centrosymétrique.

Cet arrangement est assez fréquent et se

FIG. 2. Enchaînement des cations Ag dans Ag₄H₄As₄O₁₄: projection sur le plan (b,c).

retrouve pour d'autres éléments des colonnes V et VII du tableau périodique sous forme d'isopolyanions ou d'hétéropolyanions.

Le cas des isopolyanions $BaH_6As_4O_{14}$ (5), $[(NH_4)_4Mo_6O_{14}]_n$ (6, 7, 8) est très fréquent.

 $(NH_4)_4H_6(As_6V_4O_{30}), 4H_2O$ est un exemple d'hétéropolyanion où $As_6V_4O_{30}$ est formé de deux groupes $As_2V_2O_{14}$ liés entre eux par deux tétraèdres AsO_4 (9). Chaque groupe $As_2V_2O_{14}$ pouvant être considéré comme un groupe As_4O_{14} dans lequel on aurait les deux octaèdres AsO_6 remplacés par VO_6 .

Cohesion cristalline

Les polyèdres d'argent sont reliés entre eux par des arêtes communes O(L22)– O(E12), O(E22)–O(E22) ou des sommets communs (Fig. 2). L'enchaînement de ces cations est tridimensionnel. Les anions As_4O_{14} renforcent encore plus la charpente formée par les atomes Ag. Les protons acides que nous n'avons pas pu localiser à cause de la forte contribution électronique des atomes de Ag et As doivent sûrement

FIG. 3. Schéma de l'anion $As_3O_{10}^{5-}$ dans $H_5As_3O_{10}$.

FIG. 4. Schéma de polyanion $As_2O_6^{2-}$ dans Na HAs_2O_6 .

contribuer encore à une plus grande cohésion cristalline. C'est ce qui est confirmé par la très grande stabilité de ce composé.

Conclusion

L'étude structurale de $Ag_4H_4As_4O_{14}$ fournit un exemple du fait que la chimie des arséniates est plus complexe et s'écarte très notablement, contrairement à ce qu'on pense, de celle des phosphates. Ainsi, l'une des variétés de l'acide arsénique, $3As_2O_5$, $5H_2O$ ($H_5As_3O_{10}$), ne contient pas d'anions tripolyarséniates—comme on peut le croire mais est formé d'anions AsO₄ et AsO_6 reliés en chaînes infinies (Fig. 3) (10). Il en est de même pour l'anhydride arsénique As₂O₅ qui est formé également d'octaèdres AsO₆ et de tétraèdres AsO₄ dans les proportions 50-50 (11). Deux autres composés, Na₂O, 2As₂O₅, H₂O: (NaHAs₂O₆) et Na_2O , $3As_2O_5$, $2H_2O$ ($NaH_2As_3O_9$), ne sont ni des polyarséniates, ni des trimétarséni-

FIG. 5. Schéma de l'anion As₃O₉³⁻ dans NaH₂As₃O₉.

ates. Le premier composé (12) est formé de feuillets plans de AsO_4 et AsO_6 . Quant au second, les anions AsO_4 et AsO_6 forment des files (13). Les figures 4 et 5 représentent schématiquement les condensations des anions AsO_6 et AsO_4 dans $NaHas_2O_6$ et $NaH_2As_3O_9$.

Ainsi donc, on ne peut préjuger de la structure des anions arséniates condensés en se référant uniquement à la formule chimique. Seules des études physiques peuvent indiquer ou préciser si l'anion condensé est constitué uniquement de tétraèdres comme dans le cas des phosphates ou de tétraèdres et d'octaèdres.

Notons enfin que ce composé peut ouvrir des voies nouvelles dans la synthèse d'autres composés possédant ce même type d'anion. Théoriquement et par analogie avec la réaction de Boullé (14), en faisant réagir un chlorure sur $Ag_4H_4As_4O_{14}$, on devrait précipiter AgCl et obtenir, ainsi, par réaction d'échange l'arséniate condensé du métal utilisé. La réaction chimique s'écrivant

$$xAg_{4}H_{4}As_{4}O_{14} + 4M^{x}Cl_{x} \rightarrow 4xAgCl + M^{x}_{4}(H_{4}As_{4}O_{14})_{x}$$

Avec la réserve évidente que le composé que l'on désire préparer soit lui-même soluble et que l'anion As_4O_{14} soit peu sensible à l'hydrolyse.

References

- 1. A. BOUDJADA, Structure cristalline du S.D.A., à paraître dans Mater. Res. Bull.
- 2. "Structure Determination Package," Enraf Nonius, Delft (1979).
- 3. M. DEHEDIN-FAVRE, J. MASSON, ET H. GUERIN, Bull. Soc. Chim. Fr. 1, 78-79 (1972).
- 4. M. BAGIEU-BEUCHER, A. DURIF, ET J. C. GUITEL, Acta Crystallogr. Sect. B 31, 2264-2267 (1975).
- 5. D. BLUM, A. DURIF, ET J. C. GUITEL, Acta Crystallogr. Sect. B 33, 3222–3224 (1977).
- 6. K. H. TYTKO ET B. SCHÖNFELD, Z. Naturforsch. B 30, 471 (1975).
- 7. I. KNÖPNADEL, H. HARTL, W. D. HUNNIUS, ET J. FUCHS, Angew. Chem. 86, 894 (1974).
- 8. W. D. HUNNIUS, Z. Naturforsch. B 29, 599 (1974).
- 9. M. T. AVERBUCH-POUCHOT ET A. DURIF, Acta Crystallogr. Sect. B 35, 1441–1444 (1979).
- 10. K. H. Jost, H. WORZALA, ET E. THILO, Acta Crystallogr. 21, 808-813 (1966).
- 11. A. WINKLER, Z. Anorg. Allg. Chem. 350, 320-325 (1967).
- 12. D. NGUYEN-HUY ET T. JOUINI, Acta Crystallogr. Sect. B 34, 3727–3729 (1978).
- M. T. AVERBUCH-POUCHOT, Structure cristalline de NaH₂As₃O₉ (private communication).
- 14. A. BOULLE, C.R. Acad. Sci. Paris 206, 517-530 (1938).